OFDM 伝送実験用 FPGA シミュレータ

FPGA Simulator for OFDM Transmission Experiments

須山 聡,鈴木 博,府川 和彦

Satoshi SUYAMA, Hiroshi SUZUKI, and Kazuhiko FUKAWA

東京工業大学 大学院理工学研究科

Graduate School of Science and Engineering, Tokyo Institute of Technology

〒152-8550 東京都目黒区大岡山 2-12-1

2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8550 Japan TEL, FAX: 03-5734-3770, E-MAIL: {ssuyama, suzuki, fukawa}@radio.ss.titech.ac.jp

1. はじめに

将来の移動通信において予想される厳しい周 波数選択性フェージング環境でも高速・高信頼な 伝送を実現できる変復調方式として OFDM が注 目されている.既に OFDM は無線 LAN や地上波 ディジタル放送に採用されており,さらに高度化 されると考えられる.

当研究室では一層の高速化を図るために,送受 信で複数のアンテナを用い空間多重化を行う MIMO-OFDMを検討している.すでに,(i)ガー ド・インターバルを超える遅延による符号間干渉 を除去する等化器,(ii)ドップラー変動によりサ ブキャリア間の直交性が崩れることで発生する キャリア間干渉を除去する受信方式,(iii)同一チ ャネル干渉を除去する MIMO 方式等の提案に関 して,計算機シミュレーションにより特性を解明 してきた[1-3].本稿では,これらの高度な無線信 号処理のハードウェアによるリアルタイム動作 を検証するため,OFDM 伝送実験用シミュレータ を構築したのでその詳細について明らかにする.

2. OFDM 伝送実験用 FPGA シミュレータ

OFDM 伝送実験用シミュレータは,複数の FPGAによりベースバンド基本OFDM 伝送実験系 を実現している.ハードウェアとしては,東京エ レクトロンデバイス社製の大規模 FPGA ボードを 用いており,約700 万システムゲートの FPGA で ある Xilinx 社製 Virtex-II Proを6 個搭載している. なお, FPGA 1 個当たり 328 個の乗算器が搭載さ れており,優れた MAC 性能を実現できる.

また,アナログ入出力として,14 bit,105 Msps の ADC を 4 チャネル,14 bit,160 MspsのDAC を 8 チャネル分搭載している.

シミュレータに実装した回路の構成を図1に 示す.OFDMの送信処理部および受信処理部に加 えて,伝送性能を評価するための無線伝搬路シミ ュレーション部,雑音発生器,BER/PER 測定器か ら構成される DAC により FPGA の内部信号を出 力することで,マルチパスフェージング環境にお ける受信信号や検波信号をオシロスコープ等で 観測できる.OFDM のパラメタは IEEE802.11a/g に準拠した[4].ただし,変調方式としては符号化 率 1/2 の QPSK のみを実装しており,帯域幅は動 作クロックに合わせて変化する.送信するビット は FPGA 内部で PN 系列生成器により作成してい る.16bit 固定小数点演算を用いた.

OFDM 送信処理部および受信処理部の構成を 図2,図3に示す.IFFT および FFT は Xilinx 社 から提供されている無償の IP コアを用いている. それ以外のモジュールについては,VHDL により 当研究室で記述した.現状では,ディジタルベー スバンド回路のみなので,タイミングリカバリー については実装していない.

無線伝搬路シミュレーション部には,各パスが フェージング変動に比例する時間間隔で発生と 消滅を繰り返す,当研究室で考案されたアルゴリ ズムを実装した[5,6].

3. 性能評価

基本 OFDM 伝送実験系に実装したモジュール の性能を表1にまとめる 系全体では最大80 MHz まで動作させることが可能である.最も回路が複 雑な軟判定ビタビ復号(拘束長7の畳み込み符号 の復号用)がボトルネックになっている.

OFDM 伝送実験用シミュレータで取得した AWGN チャネルでの PER 特性を図4に示す PER 特性は CRC による誤り検出によって測定した. データシンボル数は 10 とした.比較のため,計 算機によるC言語シミュレーションの結果も示す. Double は倍精度浮動小数点,Short は 16bit 固定小 数点の結果である.図4より 16bit 固定小数点に よる劣化はなく,FPGA に実装したモジュールの 妥当性が確認できた.

また,2パス等レベルレイリーフェージング環 境での PER 特性を図5に示す.計算機シミュレー ション結果と比較して,若干良い特性ではあるが, ほぼ理想的な特性を取得できた.無線伝搬路シミ ュレーション部の実装も良好に行えたが検証で きた.

4. まとめ

高度な無線信号処理のリアルタイム動作検証 用 OFDM 伝送実験用シミュレータのハードウェ ア構成,実装した回路およびその性能について示 した.また,シミュレータを用いることで,誤り 訂正を含めたOFDM 伝送系において80 Mbps での 伝送特性の取得が行えることを示した.今後はさ らなる高速,高度化を行う予定である.また,現 状ではベースバンド系のみであるが,将来的には アナログフロント・エンドの構築も検討している.

表1 実装したモジュールの性能

	構成要素	機能・特徴	動作周波数
ì	送信処理部	・QPSK変調 ・64ポイントIFFT	170 MHz 120 MHz
移 シミ	動無線伝搬路 ュレーション部	・フェージングモデル ・ガウス雑音発生	120 MHz
ł,	受信処理部	・64ポイントFFT ・同期検波 ・軟判定ビタビ復号	120 MHz 170 MHz 80 MHz

図 4 AWGN チャネルにおける PER 特性

図5 マルチパスチャネルにおける PER 特性

参考文献

須山他, IECIE 技術報告, RCS2002-312, 2003年
月. [2] 伊藤他, IECIE 技術報告, RCS2003-74, 2003年7月. [3] 山田他, IECIE 技術報告, CS-2003-184, 2004年3月. [4] IEEE Std 802.11a, *High-speed Physical Layer in the 5 GHz Band*, 1999.
須山他, YRP 移動体通信産学官交流シンポジウム 2002, pp. 62-63, 2002年7月. [6] N. Suwunniponth, *et al*, *Proc. 1999 IEEE Intern. Symp. on Intelli. Signal Proc. and Commu. Systems*, pp.137-140, Dec. 1999.